
Extended Abstract

Motivation This project aims to improve the capabilities of small language models Qwen 2.5 0.5B
Base model) through reinforcement learning (RL) and knowledge distillation. We investigate whether
preference-based optimization methods such as Direct Preference Optimization (DPO) and Reward
Learning with Online Optimization (RLOO) can enhance small model performance on instruction
following and math reasoning tasks. Additionally, we examine the effectiveness of distilling from
medium-sized instruction-tuned teacher models (Qwen 2.5 Math 1.5B and 3B Instruct) and assess
how teacher size influences student performance, particularly on mathematical reasoning benchmarks.
This study is motivated by the broader goal of understanding the trade-offs between model efficiency
and performance, evaluating the role of instruction-tuned models as strong teachers, and revealing
scenarios where RL methods may or may not benefit small-scale models compared to distillation
approaches.

Method We structure the study around two core tasks: instruction following and math reasoning.
Starting with supervised fine-tuning (SFT) on task-specific datasets, we apply DPO to optimize
preference alignment in instruction-following and RLOO to improve reward-guided reasoning in
math tasks. In parallel, we explore offline distillation by generating teacher responses from larger
models and training the 0.5B student to mimic these outputs. We then compare student models trained
via distillation versus those trained with RLOO alone across standardized evaluation benchmarks.

Implementation All pipelines are built using PyTorch and Hugging Face Transformers, with infer-
ence accelerated via vLLM. RLOO leverages vLLM’s distributed sampling for response generation
and a learned reward model for gradient updates. Evaluation follows two strategies: instruction
responses are scored by the Llama 3.1 Nemotron-70B reward model, while math reasoning outputs
are evaluated by a verifier using rule-based correctness checks.

Results Distillation consistently improves performance in both instruction following and math
reasoning. In contrast, DPO fails to outperform SFT, possibly due to the influence of negative samples.
RLOO improves correctness in math tasks but slightly underperforms compared to distilled models.
Prompt format significantly affects SFT performance. We find that system prompts yield better
alignment than single-turn prompts.

Discussion The results highlight the promise of distillation from strong supervised teachers, es-
pecially when RL-finetuning does not yield additional gains. DPO’s limitations may stem from the
inclusion of poor-quality responses during training. Limitations of distillation include the use of
only supervised teacher models, fixed student size, and limited teacher diversity. Future work should
explore RL-finetuned teachers, larger student scales, and ensemble distillation. Overall, our results
highlight the nuanced trade-offs between imitation-based and reward-based training strategies for
scaling small LLMs.

Conclusion Our results suggest that while prompt-aware SFT can produce strong baselines, DPO
may introduce instability, likely due to harmful gradients from negative samples. RLOO, on the
other hand, effectively leverages reward signals for structured tasks like math reasoning. Distillation
proves to be a stable and scalable alternative, offering moderate gains without the overhead of online
RL. However, its effectiveness appears bounded by teacher diversity and student capacity. These
findings highlight the importance of task characteristics in choosing between RL and imitation-based
alignment strategies.



Can Small LLMs Learn from Medium Ones?

Charlie Jiang
Department of Bioengineering

Stanford University
cjiang3@stanford.edu

Yixing Jiang
Department of Biomedical Data Science

Stanford University
jiang6@stanford.edu

Yi Jing
Department of Statistics

Stanford University
jingi@stanford.edu

Abstract

Large language models (LLMs) achieve strong performance on instruction-
following and reasoning tasks, but their size imposes limitations on cost-effective
deployment. This work investigates whether a small LLM (Qwen 2.5 0.5B) can be
improved via reinforcement learning and knowledge distillation from medium-sized
instruction-tuned models. We study two tasks—instruction following and math rea-
soning—and evaluate the effects of supervised fine-tuning (SFT), Direct Preference
Optimization (DPO), Reward Learning with Online Optimization (RLOO), and
distillation from frozen 1.5B and 3B teacher models. We find that while prompt
design plays a critical role in instruction-following SFT, DPO does not significantly
improve over strong SFT baselines. In contrast, RLOO leads to notable gains in
math reasoning. Distillation from teacher models yields moderate improvements,
with performance influenced by teacher size. Our results highlight when and how
small models benefit from larger ones, and provide practical guidance for aligning
small LLMs efficiently.

1 Introduction

Large language models (LLMs) have achieved impressive results in instruction following and rea-
soning tasks Ouyang et al. (2022); Chung et al. (2024); Lewkowycz et al. (2022); Brown et al.
(2020). However, their large parameter counts make them expensive to train and deploy, especially
in real-world or edge settings Kai et al. (2023); Alizadeh et al. (2024). This motivates a central
question: Can small LLMs acquire stronger reasoning and alignment capabilities by learning from
medium-sized models through reinforcement learning or knowledge distillation?

In this work, we examine whether a small-scale model (Qwen 2.5 0.5B Base) can be effectively
enhanced through two major strategies: reinforcement learning and knowledge distillation. We
focus on two distinct tasks—instruction following and math reasoning—and structure our study
accordingly.

As part of the project requirement, we first fine-tune the 0.5B model using supervised fine-tuning
(SFT) on relevant datasets. For instruction following, we explore different prompt formats and observe
that prompt engineering, including the use of system prompts, plays a critical role in determining SFT
performance. On top of SFT, we apply Direct Preference Optimization (DPO) Rafailov et al. (2023)
for instruction following and Reward Learning with Online Optimization (RLOO) Bai et al. (2022)
for math reasoning. Both DPO and RLOO are initialized from the respective SFT checkpoints. While
RLOO successfully enhances math reasoning capabilities, we find that DPO does not consistently
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outperform well-optimized SFT in instruction following, suggesting that reinforcement learning may
not always provide gains beyond prompt-aware supervision Gao et al. (2023).

Our extension explores knowledge distillation from instruction-tuned medium-sized teacher models
(Qwen 2.5 Math 1.5B and 3B Instruct) Bai et al. (2023). For the math reasoning task, we generate
teacher responses and train the 0.5B student model on these outputs, following initial SFT. We further
investigate the effect of applying RLOO after distillation to assess the complementary benefits of
offline and online learning. This extension allows us to study how teacher size, alignment quality, and
downstream fine-tuning interact in shaping the performance of small models. This extension allows
us to study whether learning from teacher models can improve performance, and how teacher size
shapes the learning outcomes of small models.

Our results demonstrate that both RL and distillation can improve small model performance, but their
effectiveness is task-dependent. Instruction following benefits more from prompt engineering and
SFT, while math reasoning sees stronger gains from reward optimization via RLOO. Knowledge
distillation from larger models provides moderate improvements, though not as strong as RL in the
math domain. These findings offer practical insights into when and how small models can best learn
from their larger counterparts.

2 Related Work

Alignment of Language Models As language models scale in size and capability, aligning them
with human intent has become a central objective. Early approaches rely on supervised fine-tuning
(SFT) on instruction datasets to adapt pretrained models for downstream tasks Sanh et al. (2022); Wei
et al. (2021). More recent methods leverage reinforcement learning from human feedback (RLHF) to
directly optimize for human preferences Ouyang et al. (2022). However, RLHF is often resource-
intensive and unstable. To address this, Direct Preference Optimization (DPO) has been proposed as a
more efficient and stable alternative that sidesteps reward model training while preserving alignment
benefits Rafailov et al. (2023). For task-specific feedback like math reasoning, Reward Learning with
Online Optimization (RLOO) offers a fine-grained signal by jointly updating the reward model and
policy Bai et al. (2022).

Our work builds on these developments by applying DPO and RLOO to a small model (0.5B),
initialized from SFT, and evaluating their effectiveness in instruction following and mathematical
reasoning tasks. In contrast to prior work which focuses on large models, we examine whether such
alignment techniques remain effective for compact models.

Instruction Tuning and Mathematical Reasoning Instruction-tuned models such as FLAN-
T5 Chung et al. (2024), InstructGPT Ouyang et al. (2022), and the Qwen series Bai et al. (2023) have
shown that high-quality instructions substantially improve task generalization. For mathematical
reasoning, models like Minerva Lewkowycz et al. (2022) and Qwen2.5 Math Yang et al. (2024)
fine-tune on domain-specific datasets to improve symbolic and numerical reasoning.

Unlike these prior efforts targeting large models, our work studies the same alignment paradigms
at the small model scale and investigates how reinforcement learning and distillation affect their
performance on instruction-following and reasoning tasks.

Knowledge Distillation for Language Models Knowledge distillation is widely used to compress
large models into smaller students by training on softened outputs or latent representations Hinton
et al. (2015); Sanh et al. (2019). In the LLM context, instruction-tuned teacher models have been
shown to produce high-quality outputs for supervision Wei et al. (2024). However, prior work rarely
compares distillation directly with reinforcement learning, or isolates the role of teacher size.

Our extension addresses this gap by distilling from medium-sized (1.5B and 3B) instruction-tuned
teachers into a 0.5B student. We compare distillation directly with RLOO to better understand their
relative impact on math reasoning performance under constrained model capacity.

3 Method

This section describes our experimental framework for aligning a small-scale language model (Qwen
2.5 0.5B) using reinforcement learning and knowledge distillation. As shown in Figure 1, our
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Figure 1: Training pipeline overview. We first fine-tune the Qwen2.5 0.5B Base model with SFT.
For instruction following, we apply DPO. For math reasoning, we either apply RLOO or distill from
Qwen2.5 Math Instruct teacher models (1.5B/3B).

approach begins with supervised fine-tuning (SFT), followed by either reinforcement learning via
DPO/RLOO or offline distillation from medium-sized teacher models.

3.1 Model Setup

We use the Qwen 2.5 0.5B Base model as the foundation for all training pipelines. Supervised fine-
tuning (SFT) is applied to this base model to create task-specific initializations. For reinforcement
learning, both DPO and RLOO are initialized from their respective SFT checkpoints. In the distillation
setup, the student model is also initialized from the SFT checkpoint, while the Qwen 2.5 Math Instruct
models (1.5B and 3B) serve as frozen teachers. These models are used to generate target responses
for training but are not updated during the process.

All models are trained and compared on instruction-following or math reasoning tasks. Further details
on evaluation metrics and results are presented in Section 4.

3.2 Supervised and Reinforcement Learning Fine-Tuning

All pipelines begin with supervised fine-tuning. For instruction following, we fine-tune the 0.5B base
model using the SmolTalk dataset. We experiment with prompt format variations (e.g., single-turn
prompts, system prompts) and find that prompt design significantly affects performance. For math
reasoning, we fine-tune on the Countdown dataset, which involves structured arithmetic tasks. Further
details about datasets and experimental setups are provided in Section 4.

After SFT, we apply reinforcement learning based on task type:

Direct Preference Optimization (DPO) For instruction following, we use DPO Rafailov et al.
(2023), which uses pairwise human preference data. Given a preferred output y+ and a rejected one
y− for the same prompt x, the DPO loss maximizes the following log-probability ratio:

LDPO = − log

(
exp (β log πθ(y

+|x))
exp (β log πθ(y+|x)) + exp (β log πθ(y−|x))

)
where πθ is the policy model and β is a temperature parameter that controls the sharpness of the
preference.

Reward Learning with Online Optimization (RLOO) For math reasoning, we apply RLOO Bai
et al. (2022), which jointly optimizes a reward model rϕ and a policy πθ. Given a trajectory (i.e.,
generated solution) y conditioned on prompt x, the policy is optimized to maximize the expected
reward:

LRL = −Ey∼πθ(·|x)[rϕ(x, y)]
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The reward model rϕ is trained using correctness-labeled outputs with a binary objective, and both
rϕ and πθ are updated iteratively during training. We use Countdown task scores to guide the reward
signal.

3.3 Knowledge Distillation

As an extension, we study offline knowledge distillation. For each prompt in the Countdown dataset,
we use the frozen Qwen2.5 Math Instruct models (1.5B and 3B) to generate response outputs. The
student model is then trained to match these responses using the standard maximum likelihood
objective:

Ldistill = −
T∑

t=1

log πθ(yt|y<t, x)

where y is the teacher output sequence and x is the prompt.

This approach enables the small model to inherit reasoning behavior from a stronger teacher without
additional reward signals or preference data.

4 Experiments

4.1 Task Descriptions

We evaluate our methods on two core tasks that require different reasoning and alignment capabilities:

Instruction Following. This task involves generating helpful, coherent, and well-structured re-
sponses to a wide variety of natural language instructions. It reflects the model’s alignment with user
intent and sensitivity to prompt formatting.

Math Reasoning. This task tests symbolic reasoning capabilities through a numerical target-
matching game called Countdown. Given a set of integers and a target value, the model must output a
valid arithmetic expression that computes to the target. The task requires planning, verification, and
structured output.

4.2 Datasets

We use distinct datasets aligned with each learning objective in our pipeline.

Instruction Following. For supervised fine-tuning (SFT), we use the SmolTalk dataset Ben Allal
et al. (2025), a high-quality collection of GPT-4o chat responses. We adopt a filtered subset from
HuggingFaceTB/smol-smoltalk 1. For preference-based reinforcement learning (DPO), we use
the UltraFeedback dataset Dubois et al. (2024), which provides binary preferences over model
completions. Prompts are drawn from the shared train_sft split, and test_gen is used for
evaluation.

Math Reasoning. For verifier-based learning tasks, we use the WarmStart dataset Gandhi et al.
(2025), which presents structured arithmetic problems requiring symbolic reasoning. A rule-based
reward function checks the correctness of generated responses. For RLOO and distillation, we use
the TinyZero dataset Pan et al. (2025), which provides curated reasoning trajectories demonstrating
backtracking and verification strategies.

Table 1 summarizes the datasets used for each task and training stage.

4.3 Experimental Setup

We evaluate models on two tasks: instruction following and math reasoning. For each task, we begin
with supervised fine-tuning (SFT) on task-specific datasets, followed by either reinforcement learning
(DPO or RLOO) or knowledge distillation. All models are initialized from the Qwen 2.5 0.5B Base
model.

1https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk
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Task Dataset Size (Train/Test) Training
Instruction Following SmolTalk 460k / 24k SFT

UltraFeedback 61k / 1k DPO
Math Reasoning Warmstart 1k SFT

TinyZero 490k / 1k RLOO
Table 1: Overview of datasets used for training and evaluation.

Supervised Fine-Tuning (SFT). SFT is performed on the SmolTalk dataset using PyTorch FSDP
with hybrid sharding. Inputs are truncated to 1024 tokens, and only the assistant response is used for
supervision. Training uses bfloat16 precision, AdamW optimizer (learning rate 7 × 10−6, weight
decay 0.1), and linear learning rate decay to 7 × 10−7. We train with a batch size of 32, gradient
accumulation of 8, and distributed data loaders across 8 A100 GPUs.

Direct Preference Optimization (DPO). DPO is applied to the SFT checkpoint using UltraFeed-
back, which contains prompt pairs labeled by preference. Training uses a batch size of 16, gradient
accumulation of 4, and 3.8k steps. The policy and frozen reference models are both initialized from
SFT. Optimization is performed with AdamW (learning rate 1× 10−6, weight decay 0.01, β = 0.1).

Reward Learning with Online Optimization (RLOO). RLOO is used for math reasoning with
the Countdown dataset. The policy model is initialized from the DPO checkpoint. Sampling is done
via vLLM (16 completions per prompt), scored by a frozen reward model trained separately. The
policy is updated via AdamW using the same hyperparameters as DPO. We synchronize weights
across sampling and training using ‘torch.distributed‘.

Knowledge Distillation. We distill teacher outputs from Qwen 2.5 Instruct (1.5B and 3B) models
on Countdown prompts. Prompts include ‘<think>‘ and ‘<answer>‘ tags to encourage structured
reasoning. Generation is performed with vLLM using top-p sampling (p=0.8, temperature=0.7). The
student (0.5B) is fine-tuned on these teacher-generated responses using standard SFT.

4.4 Evaluation Metrics

Instruction Following. To evaluate instruction-following performance, we adopt a parametric
reward model: LLaMA 3.1 Nemotron-70B Reward Model 2. This model assigns a scalar reward
score to a prompt-response pair, where a higher score indicates better alignment and response quality
for that specific prompt. However, because absolute scores across different prompts are not directly
comparable, we follow a win-rate-based evaluation strategy.

Given a set of evaluation prompts, we generate responses using both the trained model and a reference
model (Qwen 2.5 0.5B Instruct). For each prompt, we compute the Nemotron reward scores for both
responses. We assign a binary label: 1 if the trained model receives a higher reward, and 0 otherwise.
The final win rate is computed as the average of these binary labels across all prompts:

Win Rate =
1

N

N∑
i=1

1
[
R

(i)
trained > R

(i)
ref

]
where R(i)

trained and R
(i)
ref are Nemotron reward scores for the trained and reference models on prompt i,

respectively.

Math Reasoning. For evaluating math reasoning performance on the Countdown dataset, we follow
the evaluation protocol from TinyZero Pan et al. (2025). Specifically, we use a two-stage reward
function:

1. Format score: Binary indicator of whether the model provides an output in a valid format.

2. Verification score: Binary indicator of whether the response contains a correct final answer
to the arithmetic problem.

2https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward
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The overall task accuracy is computed as the product of the two components, averaged across all
evaluation examples.

5 Results

5.1 Quantitative Evaluation

We evaluate performance on two core tasks: instruction following and math reasoning. For instruction
following, we report win-rates using the Nemotron 70B reward model, comparing responses across
model variants on identical prompts. For math reasoning, we measure exact answer correctness on
the Countdown dataset using a verifier that checks both reasoning format and final numerical answer.

As shown in Table 5.1, instruction following performance increases significantly through prompt
design and supervised tuning alone. Starting from a baseline SFT model (win-rate 0.695), introducing
structured single-turn prompts yields a large gain (+12.0%), and further gains are achieved through
hyperparameter tuning and careful prompt formatting. The best instruction-following result (0.905
win-rate) is obtained with a hand-crafted system-level prompt. These improvements illustrate that
prompt optimization—when combined with a high-quality supervised dataset—can encode useful
behavioral priors without the need for expensive RL steps. This is especially effective for instruction
following, where the output space is highly structured and model alignment is sensitive to prompting.

However, we observe that applying Direct Preference Optimization (DPO) to a strong SFT model
actually hurts performance (win-rate drops to 0.395 against Qwen-0.5B-Instruct). We hypothesize
that this degradation arises from the inclusion of negative samples during DPO training, which may
introduce harmful gradients that overwrite helpful behaviors learned during SFT. Additionally, since
DPO training is guided by implicit reward differences between response pairs, its effect can be
unstable on tasks where preferences are subtle or dataset signal is noisy.

For math reasoning, SFT alone yields a correctness score of 0.316. Applying RLOO raises this
to 0.400, demonstrating the value of reward-guided fine-tuning in tasks that involve symbolic
reasoning and format-sensitive verification. Offline distillation from medium-sized teacher models
(Qwen 1.5B and 3B Instruct) improves over SFT (0.348 and 0.338 respectively), but falls short of
RLOO performance. Interestingly, the 1.5B teacher slightly outperforms the 3B model, suggesting
diminishing returns with increased model size and highlighting the importance of teacher selection
beyond just parameter count.

We also examine distillation from larger instruction-tuned models. Distilling from Qwen 1.5B and
3B teachers produces models with intermediate performance (0.348 and 0.338 respectively), higher
than the SFT baseline but below RLOO. This confirms that knowledge distillation is an effective but
bounded strategy—students can mimic teacher outputs, but are limited by teacher diversity and the
lack of online feedback. Notably, the 1.5B teacher slightly outperforms the 3B teacher, suggesting
that decoding strategy, prompt formatting, or training data alignment, not model size alone, may
dictate teacher quality.

Overall, these results highlight the following insights:

• Prompt tuning is highly effective for instruction following, especially when combined with
supervised fine-tuning on curated data.

• DPO may degrade performance if applied after high-quality SFT, due to noisy or harmful
supervision from negative samples.

• Math reasoning benefits significantly from reward-based optimization, as symbolic correct-
ness is difficult to learn from demonstrations alone.

• Distillation is competitive, especially when compute is constrained, but lacks the iterative
refinement of online RL.

• Larger teacher size does not guarantee better student performance—effective teacher behav-
ior depends on the alignment between the task, prompt structure, and decoding style.
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Method Instruction Win-Rate Math Reasoning Score
Leaderboard rnd. 1 Qwen-0.5B-Instruct

Baseline (SFT) 0.695 – 0.316
+ Single Prompts 0.815 – –
+ Hyperparam Tuning 0.885 0.458 –
+ System Prompts 0.905 0.535 –
DPO + Hyperparam Tuning – 0.395 –
RLOO – – 0.400
Distillation from 1.5B – 0.143 0.348
Distillation from 3B – 0.4900 0.338

Table 2: Performance Comparison on Instruction Following (Win-Rate) and Math Reasoning (Score)
Leaderboard rnd. 1 denotes scores submitted to the evaluation leaderboard, while Qwen-0.5B-
Instruct represents win-rates against the Qwen 0.5B Instruct baseline. Math reasoning is evaluated
on the Countdown dataset using format and correctness checks.

5.2 Qualitative Analysis

Prompt Format Comparison. We explore two key prompting strategies in instruction-following:
single prompts and system prompts. Single prompts are constructed using only a user message. For
example:

<|im_start|>user
What’s the difference between supervision and reinforcement learning in AI?
<|im_end|>
<|im_start|>assistant

This format relies solely on the user input to elicit a response. In contrast, system prompts prepend
a detailed instructional message to guide generation behavior. The following is an example of our
default system prompt, which consistently led to the best win-rate in our experiments:

<|im_start|>system
Expert AI: Deliver superior, helpful, detailed, accurate, clear, well-structured
answers.
Key directives:
- Comprehensive & Insightful: Explain reasoning; avoid superficiality.
- Accurate & Clear: Ensure correctness and easy understanding.
- Concise Completeness: Be thorough yet efficient.
<|im_end|>
<|im_start|>user
What’s the difference between supervision and reinforcement learning in AI?
<|im_end|>
<|im_start|>assistant

This setup provides high-level behavioral constraints, enabling more structured and informative
completions. Empirically, system prompts boost win-rates from 0.695 (baseline) to 0.905, indicating
their effectiveness in aligning small models to preferred response patterns. We theorize that due to
smaller models having more limited capacity, they may require more through guidance in order to
reach a desired output.

Response Comparison. Diving into the responses generated by distilled models, we observe some
characteristics. Notably, we find that distilled models often have difficulty terminating. Here we see
in a response generated by the 1.5B distilled model, despite generating detailed steps for the task
required, the model continues on to provide repeated instructions:

.... 7. Click on ""OK"" to start the conversion process. 8. Wait for the conversion to
complete. This may take some time depending on the size of your Eevee materials.
9. After the conversion is complete, you should be able to use the converted Cycles
materials in your Blender scene. ..... <themap> <table> <tr> <th>Step</th>
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<th>Command</th> </tr> <tr> <td>1</td> <td>Select the Eevee materials file
and import it into Blender.</td> ....

This may reflect the limitations of smaller models in their learning capacity, where they are unable to
effectively learn the longer reasoning chains that larger models are capable of.

6 Discussion

This study investigates the potential of enhancing small language models through two complementary
approaches: reinforcement learning (RL) and knowledge distillation. Our experiments show that
while supervised fine-tuning (SFT) provides a strong foundation, the effectiveness of further training
varies by task and methodology. In instruction-following tasks, Direct Preference Optimization
(DPO) yields mixed results and sometimes fails to outperform strong SFT baselines, indicating
that prompt-aware supervision can already capture much of the alignment signal. In contrast, math
reasoning tasks benefit more substantially from Reward Learning with Online Optimization (RLOO),
where iterative sampling and reward-guided optimization encourage more structured and verifiable
outputs.

In our extension, we explore knowledge distillation as an alternative to RL. Distillation from
instruction-tuned teacher models—specifically Qwen 2.5 1.5B and 3B Instruct—yields promis-
ing results, particularly when applied to math reasoning tasks. This suggests that small models can
absorb valuable reasoning patterns and alignment strategies from larger models via imitation, without
needing to engage in complex reward optimization procedures.

Despite these findings, our work is subject to several limitations. First, the teacher models employed
during distillation were not fine-tuned using reinforcement learning techniques. It remains an
open question whether distilling from RL-enhanced teachers could lead to stronger downstream
performance in student models. Second, distilled responses are often highly imitative, which may limit
response diversity and robustness compared to models directly optimized with RL-based objectives.
Third, our experiments fix the student model size at 0.5B parameters. The impact of distillation or
RL on models of different scales is unexplored and may not generalize in a straightforward manner.

Moreover, the base model used for student training may have already incorporated forms of alignment
or weak distillation during pretraining, which could reduce the observed marginal gains from further
distillation or preference optimization. Finally, we restricted our teacher models to two variants of
the Qwen family. The effects of alternative architectures or alignment strategies remain to be tested.

7 Conclusion

This work explores the feasibility and effectiveness of enhancing small language models through
two complementary strategies: reinforcement learning (RL) and knowledge distillation. Using the
Qwen 2.5 0.5B base model as our student, we conduct systematic experiments across two core tasks,
instruction following and math reasoning, to evaluate performance improvements derived from Direct
Preference Optimization (DPO), Reward Learning with Online Optimization (RLOO), and supervised
distillation from larger teacher models.

Our findings show that RLOO effectively improves performance in math reasoning, likely due to
the structured reward feedback in such tasks. However, DPO fails to yield improvement over SFT
in instruction following. One plausible explanation is that the inclusion of negative samples in
DPO training may introduce harmful gradients from poor-quality responses, ultimately hindering the
model’s learning. In contrast, distillation from stronger teacher models provides a robust and scalable
approach to transfer capabilities, often outperforming RL-based alternatives.

Future work may address these limitations through several directions. One promising avenue is to
compare the effectiveness of distilling from RL-finetuned teachers versus traditional instruction-tuned
ones. Such comparisons could clarify whether the benefits of reinforcement learning propagate
effectively through distillation. Another direction is to explore multi-teacher or ensemble distillation,
where the student learns from a diverse pool of teacher responses. This could promote both generaliza-
tion and diversity in student behavior. Scaling experiments across different student sizes would also
help elucidate whether our findings hold consistently across parameter regimes. Lastly, evaluating
distillation performance using teacher models trained with varied reward models, pretraining corpora,
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or alignment objectives would provide a more comprehensive understanding of how teacher diversity
affects student learning.

Overall, our study provides empirical evidence that even modestly sized models can benefit signifi-
cantly from both reinforcement and imitation-based training regimes. These findings contribute to the
broader goal of democratizing access to capable language models by making small, efficient models
more competitive through strategic training interventions.

8 Team Contributions

• Charlie Jiang led the implementation of the RLOO and distillation pipelines, including
model training and large-scale inference for teacher-student distillation.

• Yixing Jiang implemented the SFT and DPO pipelines, conducted training for these models,
and contributed to visualization and interpretation of experimental results.

• Yi Jing developed the evaluation framework, including reward model integration and win-
rate computation. Led the writing of the project proposal and took responsibility for writing
the final report and designing the poster.

Changes from Proposal. The work distribution evolved during the project, driven by computational
resource constraints and individual team members’ strengths. Initially, Charlie was expected to lead
RL finetuning and large-teacher training; instead, efforts focused on distillation and small-scale
RLOO due to compute limitations. Yi Jing transitioned from teacher model training to evaluation and
reporting. Yixing’s proposed focus on comparing RL-finetuned and supervised teachers shifted to
pipeline development for SFT and DPO. All team members collaboratively participated in experiment
tracking, analysis, and final deliverables.
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